12.12.2017, 18:56
Количество просмотров 2297

Машинное обучение повышает конверсию до 15%

По результатам исследования, проведенного компанией «Инфосистемы Джет» и аналитическим центром TAdviser, объем рынка искусственного интеллекта (AI) и машинного обучения (ML) в России составит в 2017 году около 700 млн руб. и вырастет до 28 млрд руб. к 2020 году. Драйверами этого рынка будут финансовый сектор, ритейл и промышленность.
Машинное обучение повышает конверсию до 15%

 - рис.1

По результатам исследования «Актуальные тенденции рынка машинного обучения и искусственного интеллекта», проведенного компанией «Инфосистемы Джет» и аналитическим центром TAdviser, объем рынка искусственного интеллекта (AI) и машинного обучения (ML) в России составит в 2017 году около 700 млн рублей и вырастет до 28 млрд рублей к 2020 году.

Драйверами этого рынка будут финансовый сектор, ритейл и промышленность. Такой вывод был сделан по итогам опроса представителей 100 компаний, работающих в России – ИТ-руководителей, руководителей департаментов цифровых сервисов/цифровой трансформации, влияющих на принятие решений в области ИТ.

Для анализа мировой ситуации использовались данные различных аналитических агентств (IDC, Gartner, Markets and Markets и пр.), консалтинговых компаний и вендоров (PwC, Teradata, SAP и пр.). Исследование проводилось в рамках подготовки к форуму по системам искусственного интеллекта RAIF 2017.

«Мы инициировали данное исследование, чтобы оценить реальное состояние отечественного рынка AI/ML: публичных данных по этому направлению все еще крайне мало – российские компании не спешат рассказывать о технологиях, дающих им конкурентное преимущество, – комментирует Владимир Молодых, руководитель Дирекции по разработке и внедрению программного обеспечения компании “Инфосистемы Джет”. – Полученные результаты позволили нам убедиться в правильности выбранного нами курса на развитие направления AI/ML. Бизнес сегодня проявляет повышенный интерес к подобным внедрениям, поскольку они позволяют заметно увеличивать прибыль на уже имеющихся ресурсах – и все это при небольшом (всего несколько месяцев) сроке окупаемости».

В мире количество проектов в области AI и ML за последние годы выросло в разы. Если в 2015 г. глобально анонсировались только 17 проектов, выполненных крупными компаниями, то за первую половину 2017 года – уже 74 проекта. Всего в 2015–2017 гг. было зафиксировано 162 таких проекта в 28 странах и 20 отраслях. В 85% случаев речь идет о реализованных проектах, в 15% – о планах или тестовых внедрениях по всем отраслям за исключением госструктур, где доля тестовых внедрений и анонсов оценивается в 60%. Основная доля заказчиков таких инициатив – крупный бизнес (85%).

Динамика количества проектов AI и ML в мире

Год Количество проектов/анонсов

2015                   17

2016                   71

2017                   74

США лидирует по количеству проектов AI/ML. Следом идет Великобритания, где эти решения часто используют в крупных инвестиционных банках, а также обслуживающая эту группу заказчиков Индия. Отечественный сегмент искусственного интеллекта и машинного обучения пока находится на начальной стадии формирования и значительно уступает в объемах крупному AI-рынку США. До недавнего времени практически отсутствовала наглядная демонстрация связи технологий с существующими бизнес-процессами и возможностью их улучшения. В то же время эффективные внедрения часто остаются закрытыми, ведь компании-инноваторы видят в результатах таких проектов источники дополнительного конкурентного преимущества и не спешат ими делиться. Кроме того, некоторые руководители российских компаний отмечают, что бизнес на сегодняшнем уровне автоматизации в среднем пока не готов к использованию таких инструментов. Существенный барьер для развития бизнес-ориентированного AI в России – вычислительные мощности. Для активизации проектов необходимо обеспечить соответствующее развитие высокопроизводительной инфраструктуры. Тем не менее, к настоящему моменту в России уже есть примеры внедрения ML, которые доказывают эффективность применения этих технологий и пользу для бизнеса. Так, в ритейле был отмечен рост конверсии до 15% при использовании товарных рекомендаций на базе машинного обучения, при этом количество ручных операций может сократиться до 50 раз. В нескольких опрошенных банках из ТОП-5 считают, что через 5 лет около 80% всех решений будут приниматься с помощью искусственного интеллекта и прогнозируют, что отрасль начнет активно переходить на безлюдные технологии (через 3 года клиенты в 50% случаев будут общаться с ботами). Промышленный сектор замыкает тройку лидеров по внедрению AI, однако процент проникновения технологии в компании из этой отрасли пока на низком уровне. Большинство опрошенных организаций, применяющих технологии ML, делают это в целях сокращения издержек (72%), а также для повышения качества своих продуктов или услуг (68%). Дополнительно рядом респондентов было отмечено, что инструментарий часто используется ими для решения вопросов, связанных с безопасностью. Более половины опрошенных считают, что AI может обеспечить бизнесу новые экономические выгоды.

Сферы применения AI в бизнесе

 - рис.2

Больше половины респондентов уверены, что их затраты на AI/ML в ближайшие 3–5 лет будут расти, причем примерно треть опрошенных называет цифру в 15–20% в год.

Доля расходов на AI от ИТ-бюджета

 - рис.3

Что касается направлений использования AI и ML, то наиболее открыто компании говорят об использовании ботов или систем распознавания речи. При этом почти все респонденты подтверждают, что удовлетворены существующим качеством и функционалом решений с учетом стадии их развития. В силу недостаточного уровня развития технологий, а также невысокого уровня осведомленности о них большинство респондентов затрудняются указать, каких именно инструментов AI им сегодня не хватает, апеллируя преимущественно к более интеллектуальному поиску и интеллектуальному маркетингу. В первую очередь опрошенные компании заинтересованы в сборе актуальной статистики о результатах реализованных ранее внедрений. Она станет основой для принятия решений о новых проектах или инициативах в сфере AI.

Рубрика:
{}Технологии

ТАКЖЕ ПО ТЕМЕ